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Does that mean anything?
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What can that result?

A fight over parking space has ended in tragedy. with a man IOSII‘lg his life after

I n C rea Se d po I I Ut i o n being kidnapped and brutally thrashed. rl m e S

MAN KIDNAPPED,
BEATEN
UP OVER/ -
PARKING SPAT

When Subramaniam (50) asked the accused to park ahead, since the car was blocking the
way, the driver and his friend assaulted the victim, bundled him into their car and drove
him around for an hour before dumping him on the road. Sagar Rajput reports on P2

|

mid-day’s report on March 24

Fuel wastage
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What can be done?

Solution
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Parking Guidance System

Searching for a parking spot, Real-time parking occupancy details.
instead of moving towards one. heliable guidance to vacant spotd
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Available options (Ichihashi et al., 2009)
g/
y

Camera-based systems\
e Existing CCTV network

* Need direct visibility

v ¢ Lessreliable compared to
- sensor-based systems

Counter-based systems\
* Sensors at entry and exit
* Not for open spaces

~ * Does not provide location
of vacant parking spot

J

Wired and wireless sensor-based systems )
* Ultrasonic, infrared light or wireless magnetic-based

* High cost (~$40/ sensor) (True, 2007)

* 1 parking space = 1 sensor

* 4+ processing units and transceivers for wireless sensors
. * Highly reliable and accurate /

J
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Our Solution: Camera-based systems

/ Intended applications \ / Motivations \

* No additional cost
COST * Can use existing

CCTV networks
EFFECTIVE
* learning ability
MACHINE 2 getting closer to

LEARNING  <g7gl human cognition

/

kOn-street parking and other open spacesj
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Some unfamiliar terms

Transfer learning

M‘n

ﬁjonvolutional Neural Networks (CNNs)\

N[

Cross validation

PRI 000000000.0000
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Camera-based systems: The story so far

/ Feature extraction \ /" Classification )

S
n Pre-defined (hand-crafted) features Machine learning
g)D Edges, colour, texture, ......
(¢+] Low transfer learning ability (~89%) SVMs. Neural Networks
E Susceptible to the variation in appearance Bayesian,classifiers, ensemBIes

|
|

of classifiers....

Automatic feature detection

Deep CNNs
State-of-the-art performance for image classification
High transfer learning ability (~95%)

Qbust to change in appearance J

[Input
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Contribution to the story: Novelty

K (Valipour et al., 2016; Amato eh
al., 2016; Amato et al., 2017)
— Fine-tune existing pre-trained CNNs

— Accuracies up to 99.6 % for cross-
validation process
— Accuracies up to 95.6 % for transfer

learning processes /

K Current research \

LB 0 svm

’ | CI .f.
NNNNNNNNNNNNNNNN + RELU POOLING CONVOLUTION + RELU  POOLING FL

o

Use binary SVM classifier instead
Report better accuracies

A detailed analysis is performed to
identify the parameters that affect

the accuracy

(

\_

CNN-SVM systems yield best results with
Handwriting detection (Niu and Suen, 2012)
and pedestrian detection (Szarvas et al., 2005)

Motivation )

_/
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Hypothesis and methodology

i Hypothesis: “features extracted by a pre-trained CNN can be used directly to train an SVM
classier for the detection of parking occupancy in a CCTV image sequence”’.

/ Input \ K Training \ / Testing \

N 4 A

PKLot dataset

Cross validation

{ CNN features ]

[ PKLot dataset ]
o J
4 N

[Binary SVM classifier] Transfer learning

Unoccupied Occupied

K y \\[arry ree aase]j/

A simplified layout of the framework

Barry Street dataset for one day, having sunny to cloudy
weather, created for evaluating transfer learning
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Results: Video demo

Image Capturgdime: - 06-Jan-2017 10:18:22

Processing speed (30 parking spots) - 2 seconds on 2.5GHz i5 processor.
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Some more unfamiliar words!

.

( . L) . \
Sensitivity =
TP+FN
How many occupied spots identified as occupied
g J
Specificit h
ecCITICIty =
P y TN+FP
How many vacant spaces identified as vacant
. J
( TP+TN )
Overall accuracy =
TP+TN+FN+FP
How many parking spot occupancy correctly identified

J

TN —True Negative, TP — True Positive, FN — False Negative, FP — False Positive

relevant elements

false negatives

true positives

Sensitivity=

true negatives

false positives

Specificity =



Number of parking space images on a log scale

1000000

100000

10000

1000

100

10

Results: Accuracy
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Overall accuracy: 99.7 % (PKLot data
Transfer learning accuracy: 96.6 % (B
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100.00%

99.50%

- 99.00%

98.50%
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96.50%

%— 96.00%

3837

Observations
TN
TP
FN
FP

--- Accuracy

- Sensitivity

Specificity
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Results: Correlation with time
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Image capture time

The classification accuracy of Barry street images by the time of the day.
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Discussion: Correlation with time

Time: 16:25 Hrs

| Effects of building shadows on
the parking spaces.

ST TS A A T *\, T T ey y 7
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Effects of change in occupancy
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Results: Correlation with parking spots
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Parking lot number

The variation of the accuracy over the whole period by the parking space number.
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Discussion: Correlation with parking spots

Time: 13:17 Hrs

Occlusion by wall
Ambiguity of parking spaces

Occlusion due to no visibility
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Discussion: Correlation with parking spots

Misclassification for plot no. 5
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Room for improvement

Effects of shadows and
Removing bias of training solar reflection —image
normalisation

Low-end cheap Graphics Parking space ambiguity —
Processing Units (GPUs) dynamic segmentation
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Potential for commercialisation

a R

Recommendation

Location specific model
training

better understanding of

-

\the environment /

(&

N

Requirements

Image data of all weather
conditions

Manually labelled

occupancy details

-

Expected result

Accuracy >99.7%




-

Pros \

Cost effective

Conclusion

-

%

Visibility
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/ Future works\
' ROOR

for
IMPROVEMENT

\ Niht Iighti /
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