

Movement patterns with Voronoi Diagrams

David Amores and Maria Vasardani

Paper accepted for the Research@Locate conference March 26, 2018

- In clustering or point pattern analysis, relationships between neighbouring points may provide insights
- For example, queuing during evacuations

Method

Voronoi cell properties

Voronoi diagrams

- Spatial data structure for nearest neighbour queries
- Voronoi cell or region
- Cell properties
 - Elongation
 - Orientation
 - Distance to neighbours
- Texture analysis

Proposed Voronoi Diagrams method

- Establish rules using voronoi cell properties (e.g. elongation, orientation) to **define** a pattern
- Within spatiotemporal data, if a point or group of points satisfies the rules, the pattern is said to be **identified**

Showcase

- > Dataset
- Corridor cluster
- Transition pattern
- Experiment

- Visual Analytics Science and Technology (VAST) challenge 2008
- Synthetic evacuation dataset
- Positional data from 80 people at each time step
- 800 time steps

- Queue of points
- Define pattern using elongation, orientation and distance to neighbours

Perfect queue

• Each neighbouring cells have a similarity score:

$$score(V_p, V_q) = \frac{W_E \cdot E(V_p) + W_O \cdot \Delta O(V_p, V_q) + W_D \cdot d(V_p, V_q)}{W_E + W_O + W_D}$$

- Score uses elongation, orientation and distance as a weighted average
- If the score is larger than a threshold, then the two cells belong to the same cluster
- Score represents a tradeoff

Transition pattern

- Movement from one corridor to another
- We define 3 states for the cell
 - State 1 Elongated, horizontal, more than three sides
 - State 2 Three sides
 - State 3 Elongated, vertical, more than three sides

Experiment

Visual analysis

> Our method vs. baselines

Visual analysis – Corridor cluster

Voronoi cell properties

Distance

Results – Corridor cluster

- Experiments 1 and 2 are distance based clusters
- Experiments 3 5 are our method using different weights

$$\begin{array}{l} \circ \quad \mathsf{Exp} \ \mathbf{3} - \ W_E = \frac{1}{3}, W_O = \frac{1}{3}, W_D = \frac{1}{3} \\ \circ \quad \mathsf{Exp} \ \mathbf{4} - \ W_E = \frac{1}{6}, W_O = \frac{2}{6}, W_D = \frac{3}{6} \\ \circ \quad \mathsf{Exp} \ \mathbf{5} - \ W_E = \frac{1}{8}, W_O = \frac{1}{8}, W_D = \frac{6}{8} \end{array}$$

Exp.	Precision VC	Recall VC	F_1 VC	Precision HC	Recall HC	F_1 HC
1	0.85	0.76	0.80	0.72	0.52	0.60
2	0.60	0.98	0.74	0.74	0.18	0.23
3	0.95	0.14	0.24	1	0.15	0.25
4	0.95	0.62	0.75	0.99	0.67	0.80
5	0.91	0.92	0.92	0.87	0.76	0.81

Visual analysis – Transition pattern

Voronoi cell properties

Baseline

Results – Transition pattern

- Experiment 1 3 are naïve baselines using a simple trajectory rule
- Experiment 4 is our method using voronoi cell properties

Exp.	α	Precision	Recall	F_1
1	2	0.13	1	0.23
2	4	0.26	0.88	0.4
3	10	0.3	0.38	0.33
4	-	0.6	0.75	0.67

- Voronoi Diagrams may be used to perform fine-grained pattern analysis
- Corridor cluster better than distance-based clustering using weight combination
 - $O \quad W_E = \frac{1}{8}, W_O = \frac{1}{8}, W_D = \frac{6}{8}$
 - \circ F₁ = 0.92 on VC
 - \circ F₁ = 0.81 on HC
- Transition pattern better than naïve-rules pattern \circ F₁ = 0.67

- Use other properties such as eccentricity or size
- Check how rule flexibility affects pattern identification
- Perform a thorough time complexity analysis

Thank you