

Digital Engineering Our Way to A More Efficient Project Workflow

Beng Chieh (BC) Quah Head of Marketing Asia-Pacific

22nd August 2017

August 23, 2017

Who is **FARO**?

Founded in 1981 NASDAQ since 1997 Global technology company

Offering a range of 3D Portable Measurement and Imaging Solutions, that are DISRUPTIVE in Pricing, Features and Design

Global Presence

Sales presence in more than 80 countries

R&D/Mfg/Svc
Mfg
Service

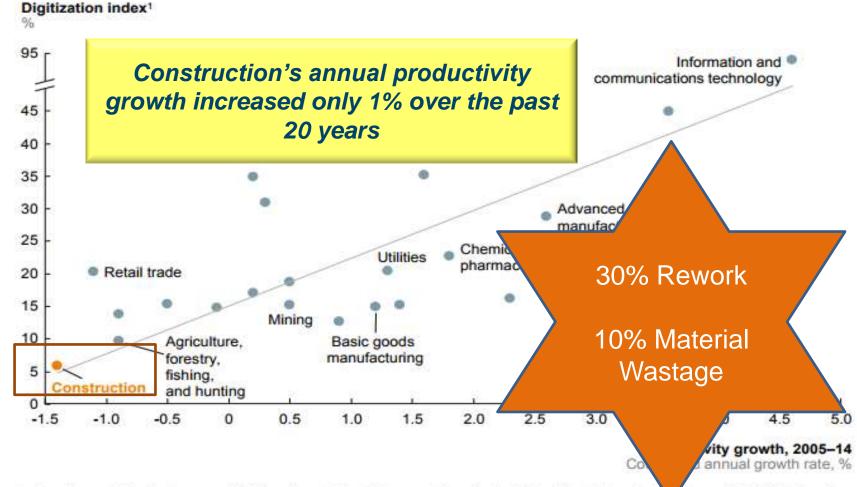
Headquarter: USA

Regional Office: Germany (EMEA) Singapore (APAC)

Digitization of Everything

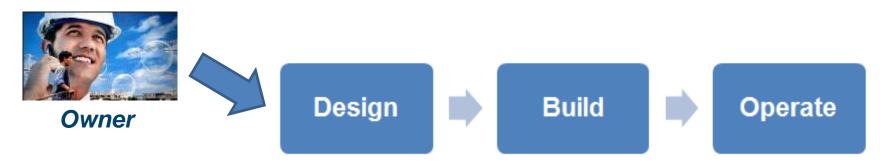
Everything is going Digital

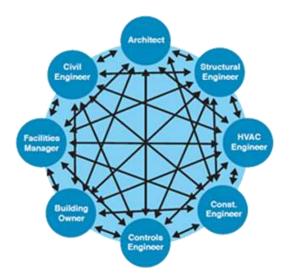
Operation Process, Process Efficiency, Quality Management, Operation Planning Available Real-Time


End-to-end digitization of all physical assets and Integration into digital ecosystems

The key Driver is the wide usage, availability and adoption of Digital Data

Underinvestment in Digitalization


Construction industry underinvests in digitalization and innovation


1 Based on a set of metrics to assess digitization of assets (8 metrics), usage (11 metrics), and labor (8 metrics); see technology and explanation of methodology.

SOURCE: BEA; BLS; US Census; IDC; Gartner; McKinsey social technology survey; McKinsey Payments Map; LiveChat customer satisfaction report; Appbrain; US contact center decision-makers guide; eMarketer; Bluewolf; Computer Economics; industry expert interviews; McKinsey Global Institute analysis

Traditional Construction Process

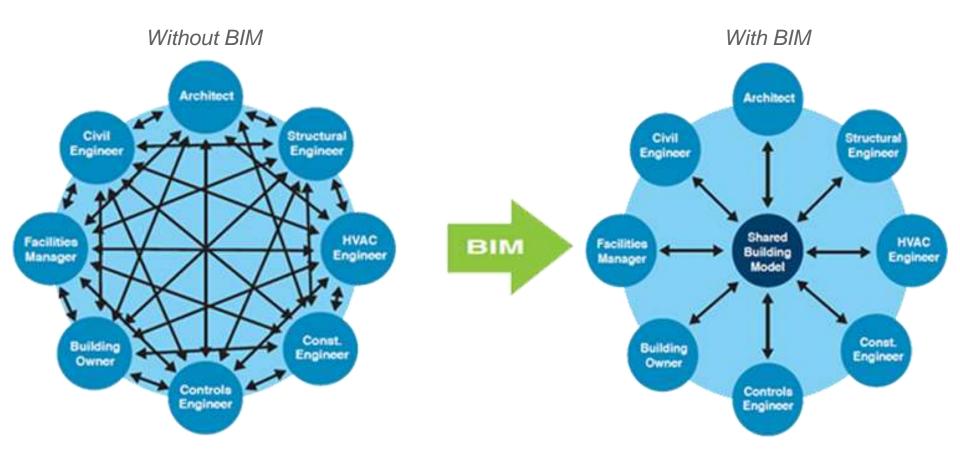
- Isolated Standalone Stages lacking feedback
- Stakeholders "downstream" very little influence over Initial Phases
- No integrated platform that connects the stages
- Stakeholders use different platforms that do not sync with one another
- Runs awry of schedule
- Goes beyond budget
- Risk of safety incidents
- Quality issues

Digital Construction Life Cycle

1) Trusted Data / Single Source of Truth

2) Integration of Workflow

3) Ease of Use / Automation


Trusted Data

Real-time digital collaboration for a "Single Source of Truth"

- Transparency on Project Progression
 - Identify potential issues
- Visualization for Effective Decision-making
 - Visualize, Share Ideas & Manage Changes
 - Check compliance (specifications, regulatory)
- Monitoring with Data Analytics
 - Project performance and On-site Safety (structural stability)
 - Avert costly corrective changes and rework

Integrated Work Flow

- BIM serves as a focal platform: Design, Modelling, Planning and Collaboration
- Integrates effectively with other digital technologies
 - Eg. 3D Scan data → input data for automated field equipment

Ease of Use / Automation

- Interface with non-technical stakeholders eg customers
- Enhance experience and interaction
- Augmented Reality:
 - superimpose images created in BIM software onto the real world
 - Realistically visualize a project eg unbuilt structures
- Virtual Reality:
 - interact with a non-physical space
 - Immersive and accurate visualizations
 - Exploration of form, space and aesthetics

Superimposing beams and columns onto a real building

Point cloud of a construction site, viewed in a VR environment

Digital Acquisition of Data

Digital acquisition of data – Accuracy & Time Efficiency

Right Information, Right Time, Right Place

Laser Scanning – One of the most widely used Technology

8000

6000

Japan: Poporo Plant

Project Objective: Retrofitting a Plant

Scope: Plant mechanical room that needed new piping and valves Prior Method: Traditional method - tape measure, digital camera, pencil Drawbacks:

- 1. Manual measurements take time \rightarrow Plant downtime
- 2. Accessibility in hard-to-reach areas \rightarrow Inaccurate measurements

Customer found it hard to understand complicated elements as there was minimal visualization


FARO Case Study

Japan: Poporo Plant

- FARO Focus^{3D} Laser Scanner
 - Capture 3D geometries of every component
 - Digitalized single data source, with accurate data
 - Reduction in worktime/downtime from 5 days to less than 1 day
 - 3D modelling with BIM

Focus^{3D} X 130 used for scanning

3D model created with point cloud data that was obtained with the Focus^{3D} X 130

FARO Case Study

Japan: Poporo Plant

- Using 3D scan data to create Virtual Reality presentation
- Enable their clients to quickly and easily understand complicated layout

Measurements are presented with VR content in life-size stereoscopic views on head-mounted displays

Why Move into Digitalization?

Digitalized Data → Efficient Workflow

- 3D Modelling Track Progress, and Compliance
- Detail Visualisation of Complex Details
- Consistency and Coordination Faster Decision
- Reduction of Reworking

Restoration of a Church

3-DEFINE YOUR WORLD