

Addressing future climate change information gaps and data needs in the Southeast Asia region through the Southeast Asia Regional Climate Downscaling (SEACLID)/CORDEX Southeast Asia Project

Fredolin Tangang

Project Leader, SEACLID/CORDEX Southeast Asia

Professor, School of Environmental and Natural Resource Sciences, Faculty of Science & Technology, National University of Malaysia, Bangi, Selangor, Malaysia

Adjunct Professor, Center of Regional Climate Change and Renewable Energy (RU-CORE), Ramkhamhaeng University, Bangkok, Thailand

22-24 August 2017, Putrajaya International Convention Centre, Putrajaya, Malaysia

Addressing Climate Change & Its Impacts

- Human induced climate change is unequivocal (IPCC 2013)
- Adapting to climate change impact is crucial since the success of mitigation remains uncertain
- While mitigation is global in nature, adaptation is implemented locally
- Implementing adaptation measures on critical sectors (e.g. water resources) requires robust climatic information at the local scales
- Climate information varies temporally and spatially; Hence geospatial analysis is relevant
- Information on past and present climate is insufficient; Need to understand future climate under changing GHG emission scenarios; Climate modeling is required
- Future climate information is provided by GCM which operates at coarser resolution
- There is a need to "refine" this information to resolve complex topography, coastlines, local processes etc.; this is known as regional climate downscaling.
- Regional climate downscaling: Statistical Downscaling and Dynamical Downscaling

Source: National Oceanic and Atmospheric Administration (NOAA), 2012

THE CONCEPT OF SPATIAL

Many of the processes that control local climate, e.g., topography, vegetation, and hydrology, are not included in coarse-resolution GCMs. The development of statistical relationships between the local and large scales may include some of these processes implicitly. Source: Viner, 2012

General Circulation Model (GCM) vs. Regional Climate Model (RCM)

CMIP3,5; Resolution 100 - 300

RCPs

Regional Climate Downscaling

The amount of information supporting conclusion regarding observed and projected impacts

Sector	Topics/issues	North Asia		East Asia		Southeast Asia		South Asia		Central Asia		West Asia	
	O = Observed impacts, P = Projected impacts	0	Р	0	Р	0	Р	0	P	0	Р	0	Р
Freshwater resources	Major river runoff	1	×	1	1	1	1	T_{-}					×
	Water supply	×	x	×	x	×	x	×					×
Terrestrial and inland water systems	Phenology and growth rates	1	I	1	1	×	x	×					×
	Distributions of species and biomes	1	1	1	1	×	x	×		0	_		×
	Permafrost	1	1	1	1	1	x	1					×
	Inland waters	x	×	1	x	×	x	×	4	\mathbf{O}			x
Coastal systems and low-lying areas	Coral reefs	NR	NR	1.	1	1	1	×z. –				0,	1
	Other coastal ecosystems	×	x	1	1	×	x	×					×
	Arctic coast erosion	1	1	NR	NR	NR	NR	NR		U	U		NR
Food production systems and food security	Rice yield	×	x	1	1	×	1	×					1
	Wheat yield	×	×	×	×	×	×	×		ö			12
	Corn yield	×	x	x	1	×	x	×	la.	2			×
	Other crops (e.g., barley, potato)	×	x	1	1	×	x	×					r LO
	Vegetables	×	x	1	x	×	×	×					×
	Fruits	×	×	1	x	×	x	×					×
	Livestock	×	x	an.	x	×	x	×					×
	Fisheries and aquaculture production	x	1	x	1	×	1	×				_	× U
	Farming area	×	1	x	1	×	x	×					×
	Water demand for irrigation	x	1	x	1	×	x	×		\mathbf{O}	Ð	0	× 🗅
	Pest and disease occurrence	×	x	x	x	×	x	×					×
Human settlements, industry, and infrastructure	Floodplains	×	x	1	1	1	1	1		()			×N
	Coastal areas	x	×	1	1	1	1	1				Φ	×
	Population and assets	x	x	1	1	1	1	×.		Y			×
	Industry and infrastructure	×	x	1	1	1	1	1					×
Human health, security, livelihoods, and poverty	Health effects of floods	×	x	x	x	×	x	1		Τ			× ()
	Health effects of heat	×	×	11	x	×	x	×					×
	Health effects of drought	x	×	x	x	×	x	×					×
	Water-borne diseases	×	x	×	x	1	x	1					× .0
	Vector-borne diseases	x	×	×	x	1	×	1		S		$\mathbf{\Omega}$	×
	Livelihoods and poverty	x	×	1	×	×	×	\mathcal{T}					ж
	Economic valuation	x	×	×	×	1	1	1		100000			×

CORDEX provides global coordination of **Regional Climate** Downscaling for improved regional RUF climate change Regional Climate Downscaling EXP adaptation and impact assessment

CORDEX Management

CORDEX Science advisory team (SAT), 12 members

- International Project Office for CORDEX (IPOC) hosted at SMHI since January 2015 (E. O'Rourke Head).
- CORDEX archiving coordinated by IS-ENES
- Regional points of contact (POCs), 2-3 per region

CORDEX domains

SEACLID CORDEX-Southeast Asia

The Southeast Asia Regional Climate Downscaling (SEACLID) / CORDEX Southeast Asia Project

Fredolin Tangang Coordinator, CORDEX Southeast Asia

- 14 Countries, 20 Institutions
- 25 km x 25 km
- ~3yrs [Nov 2013 Dec 2017]
- Funded by APN and funds from individual countries; Second phase 2016 2019

(http://www.ukm.edu.my/seaclid-cordex)

GCMs, RCMs, RCPs and Country Assignments

Country	GCM	Institution & Country developed the GCM	RCP	RCM	
Vietnam	CNRM-CM5	Centre national de Recherches Meteorologiques, France	RCP8.5, 4.5	RegCM4	
Philippines	HadGEM2	Hadley Centre, UK	RCP8.5, 4.5	RegCM4	
Thailand	MPI-ESM-MR	Max Planck Institute for Meteorology, Germany	RCP8.5, 4.5	RegCM4	
Thailand	EC-Earth	EC-Earth consortium	RCP8.5, 4.5	RegCM4	
Indonesia	CSIRO MK3.6	CSIRO, Australia	RCP8.5, 4.5	RegCM4	
Malaysia	CanESM2	Canadian Centre for Climate Modeling and Analysis, Canada	RCP8.5, 4.5	RegCM4	
Malaysia	IPSL-CM5A-LR	Institute Pierre-Simon Laplace, France	RCP8.5, 4.5	RegCM4	
Malaysia	GFDL-ESM2M	GFDL, USA	RCP8.5, 4.5	RegCM4	
South Korea	HadGEM2-AO	Hadley Centre, UKMO	RCP8.5, 4.5	WRF	
Sweden	CNRM-CM5	Centre national de Recherches Meteorologiques, France	RCP8.5, 4.5	RCA3	
Sweden	HadGEM2-ES	Hadley Centre, UKMO, UK	RCP8.5,4.5	RCA3	
Australia	CNRM-CM5	Centre national de Recherches Meteorologiques, France	RCP8.5	CCAM	
Australia	CCSM4	NCAR, USA	RCP8.5	CCAM	
Australia	ACCESS1.3	CSIRO, Australia	RCP8.5	CCAM	
Hong Kong SAR	CCSM4 or CESM	NCAR, USA	RCP8.5, 4.5	WRF	
United Kingdom	HadGEM2-ES	Hadley Centre, UKMO	RCP8.5, 4.5	PRECIS	
Germany	MPI-ESM-LR	Max Planck Institute for Meteorology, Germany	RCP8.5, 4.5	ROM	
Japan	MRI-AGCM3.2	Meteorological Research Institute, JMA, Japan	RCP8.5,4.5	NHRCM	

Temperature

Projected Temperature for RCP 4.5

Projected Temperature for RCP 8.5

Precipitation

Wetter condition is projected over mainland SEA region

 Becoming drier over
 Maritime
 Continent

JJA Mean Rainfall Future changes (% of mean rainfall during historical period)

GCM

RCM

Extremes

Annual CDD Future changes (% of mean CDD during historical period)

CDD – Consecutive Dry days i.e. duration; Indicator of dryness

 CDD is projected to increase especially over Maritime Continent

 This annual dryness is mostly contributed by boreal summer season Annual R50mm Future changes (% of mean R50mm during historical period)

R50mm – No. of days exceeds daily rainfall 50mm; Indicator of frequency of extreme rainfall

- Frequency of extreme rainfall is projected to increase
- Over Maritime Continent, despite mean rainfall is projected to decrease, frequency of extreme rainfall is projected to increase

Annual RX1Day Future changes (% of mean RX1Day during historical period)

RX1Day – Monthly maximum 1-day precipitation; Indicator of intensity of extreme rainfall

- Intensity of extreme rainfall is projected to increase
- Over Maritime Continent, despite mean rainfall is projected to decrease, intensity of extreme rainfall is projected to increase

SEACLID/CORDEX Southeast Asia contributes significantly

- Enhanced networking in regional climate modeling
- Enhanced capacity building in regional climate simulation (PhD, MSc)
- Enhanced scientific understanding of regional climate change
- Enhanced visibility in scientific publications of regional climate change (~ targeting 20 publications)
- Establishment of database from this project to be accessible freely by user community
- Report for policy makers from key scientific findings of this project

• Some project members directly involved in providing scientific to the government

Welcome, Guest. | Login | Create Account

You are at the ESG-DN1 RU AC TH node

SEACLID/CORDEX Southeast Asia

Home About Us Users Resources Contact Us	Technical Support
Welcome to the SEACLID/CORDEX SEA ESGF Node @ RU-CORE	Federated ESGF-CoG Nodes Not federated with any nodes.
	Search & Download Data Search & Download Data Simple Text Search Go Q Search with options Browse Projects This All My Tags Parent projects (1) TestProject Peer projects (1) TestProject (1) TestProject (1) TestProject (1) TestProject (2) Enter Tag Go Start typing, or use the 'Delete' key to show all available tags. CORDEXSEA Tags: None

Thank you

Jing Xiang CHUNG¹, Ester SALIMUN¹, Liew JUNENG¹, Supari SUPARI³,<u>Gemma NARISMA</u>⁴, Faye Cruz⁵, Tan Van PHAN⁶, Thanh NGO-DUC⁶, Jerasron SANTISIRISOMBOON², Patama SINGHRUCK⁷, Dodo GUNAWAN³, Edvin ALDRIAN³, Grigory NIKULIN⁸, Hongwei YANG⁹

¹National University of Malaysia, Malaysia, ² Ramkhamhaeng University, Thailand, ³ Agency for Meteorology Climatology and Geophysics, Indonesia, ⁴ Ateneo de Manila University, Philippines, ⁵ Manila Observatory, ⁶ Vietnam National University, Viet Nam, ⁷Chulalongkorn University, Thailand, ⁸ Swedish Meteorological and Hydrological Institute, Sweden, ⁹ APEC Climate Center, South Korea