GeoSmart Asia 2016: GI for Disaster Preparedness and Risk Reduction Bandung, Indonesia | 12 October 2016

Integrated and Multi-Hazard Disaster Management

Lim Choun Sian & Nurfashareena Muhamad

Centre for Southeast Asia Disaster Prevention Research Initiative (SEADPRI) Universiti Kebangsaan Malaysia

Outline:

- **1.** Introduction
- 2. Cascading & Climatedriven disasters in Malaysia
- 3. Examples from SEADPRI

Disaster Risks in Southeast Asia

- The majority of disaster that affect cities in Southeast Asia are climate driven (flood, landslide, storm, drought), except earthquake and volcano
- Climate related threats account for 30% of the total GDP damage across cities in the region, where total GDP at risk can be as high as 5%, higher losses are expected due to climate change (Source: Cambridge Centre for Risk Studies 2015; IPCC 2014)

Earthquake > Tsunami > Nuclear Disasters

- 11th March 2011 Mw=9 earthquake off the Pacific coast of Tohoku
- Tsunami wave, flooding, landslides, fires, building and infrastructure damage, nuclear incidents including radiation releases

Introdution

From Hyogo to Sendai

- Hazard and disaster types
- Disaster reduction to Disaster Risk reduction

Multi-Hazard

- □ More than just multiple of 'single-hazard' approaches
- More than independent analysis of multiple different natural and/or technological hazards
- Multi-hazard approaches are essential; where failing to understand the whole natural system (rather than a small portion of it) can distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate risk

Disaster events

May occur simultaneously or cumulatively over time, and taking into account the potential interrelated effects that sometimes realizing to Cascading Disasters and Impacts

Typhoon Greg 1996 > Landslides + Floods

- A rare tropical storm
 Greg landfall in
 Keningau, Sabah on 26 27 Dec 1996
- The rainstorm caused landslides & mudflood
- In the event 238
 peoples died, with
 another 200–300 are
 missing, 3,000–4,000
 people homeless

Big Flood 2014 > Landslides + Floods

- Major flood including landslides and debris flood
- □ Geological factor:
 - Basin Geomorphology and river processes
 - Rain-induced
 landslides and debris
 flood
- Understanding basin geomorphology and paleo-history of the fluvial system

Earthquake 2015 > Landslides > Debris Floods

- 5th June 2015 Mw=6.0
 earthquake in Sabah
 Malaysia
- □ Geological factor:
 - Slope & Basin
 Geomorphology
 - Rain-induced landslides and debris flood
- Rockfalls on Mount Kinabalu killed 18 people & loosened rock-soil of mountain slope
- Rainstorm generated
 landslides & released large
 volumes of sediment.
 Flooded several villages and
 water supply

Climate-driven Disasters in Malaysia

100		
	cead	nei -
	acau	

	Event (Year Type Location)	Death*#	Affected People*	Note#
1	1965 Flood	6	300,000	Kelantan, Terengganu
2	1967 Flood	50	125,000	Kelantan, Terengganu, Perak
3	1970/1 Flood	61	243,000	Pahang, Terengganu,
				Kelantan, Selangor (Kuala
				Lumpur)
4	1993 Highland Towers, Selangor	48		Landslide after heavy rain
5	1993 Flood	30	20,000	Kelantan, Trengganu,
				Pahang, Perak, Johor, Sabah
6	1995 Debris Flow, Genting	20		Heavy rain before event
	Sempah, Pahang			
7	1996 Greg Storm, Sabah	270	1,150	Flood, Landslide & Debris
				Flood
8	1996 Debris Flood, Pos Dipang,	44		Heavy rain before event
	Perak			
9	1999 Landslide, Kg Gelam,	17		Heavy rain before event
	Sandakan, Sabah			
10	2006/7 Flood	52	244,051	Pahang, Terengganu.
				Kelantan, Johor
11	2011 Landslide, Hulu Langat,	16		Heavy rain before event
	Selangor			
12	2013 Flood	17	220,000	Pahang, Kelantan,
				Terengganu

Note: *Data from EM-DAT, #Data from supplementary sources

>>> 2014 Big Flood

500,000

Kelantan, Pahang, Perak, Terengganu

Frequency of Disasters in Malaysia

IPCC 2014 (AR5): The First step in Adaptation to future climate change – Reduce Vulnerability and Exposure to present Climate Variability

Frequency of Disasters in Malaysia

Disaster data complied by SEADPRI from various sources

Climate Induced Disasters

- Cameron Highland
- Debris flood 2013 & 2014 (Rain/ Erosion induced?)
- □ Rain-induced Debris Flow 2011
- Multiple contributing factors given

Multi Hazard Risk Assessment

- Some Examples:
- Kelantan River Basin
- □ Klang River Basin
- Langat River Basin

Kelantan River Basin

Source: Joint Project KPM/UMT, JMG, UTM, UMK, UKM, USM 2014

Landslides

EP: Model Restan

Flood

Klang River Basin Langat River Basin

Database: Lim 2013 & SEADPRI

Source: Rasyidah et al., 2012 based on data from JPBD Selangor

Local Scale Mapping

 Multidisciplinary and technical data derived from various sources & can be categorized into several categories; a) inventory, b) predisposing criteria,
 c) triggering factors, d) element at risk

Main methods:

Development of inventory & High-res Data
Content & Statistical Analysis
Spatial Modeling

Susceptibility maps

Nurfashareena Muhamad et al 2015

Concluding Remarks

• Emerging trends of

- Simultaneous Multi / Cascading Disasters
- Increasing Climate-Driven Disasters
- Triggered by Extreme Climate Events
- The need for local and higher resolution mapping and multi-hazard risk assessment
- DRR Cycle
- The importance of systematically analyze and assess risks in integrated manner using multi-hazard, natural systemic or people centered approach i.e. ecological, hydrological, geomorphological

Thank You