

Ground-based Imaging Radar for Landslide Monitoring

19th October 2016

Gs. Ir. Assoc. Prof. Dr. Chan Yee Kit

Associate Professor Center for Remote Sensing and Surveillance Technologies Multimedia University, Malaysia

Facts & Figures

China Banqiao dam's failure, killed > 171,000 people in 1975

Rana Plaza, Bangladesh, collapsed in 2013 (killed 1,129)

Highland Tower collapsed in 1993, Ulu Klang, Selangor, 48 killed

Landslides in KL, 2011, 12 people killed

Bridge collapsed in Penang, 2013, 1 killed

- > 1 mil people exposed to landslide hazards every year
- > 21,000 landslide-prone areas in Malaysia
- (16,000 in Peninsular, 3,000 in Sabah, 2,000 in Sarawak)
- > 120,000 high-rise buildings over 12 stories tall
- > 48,000 dams over 15 m high

> 250 long bridges over 2 km long, hundreds of thousands of bridges, high risk mining sites, …

Existing Ground-Truth Monitoring Systems

3D Laser Scanner

Extensometer

Total Station

Tiltmeter

Inclinometer

These are ground-truth measurement instruments: Labor intensive Require maintenance on-site, thus increasing hazards to personnel re-entering potentially high risk areas

Urgent Need for Preventive Monitoring of Structural Health and Earth Environments

- ✓ Non-destructive remote sensing
- ✓ High resolution change detection in cm-mm
- ✓ Wide area coverage complete 3D model
- ✓ All weather 24/7 periodic monitoring
- ✓ Real-time online retrieval early warning
- ✓ Low cost affordable for developing countries

Remote Monitoring using GBSAR system

GBSAR System Parameter

Design Parameter	Design Value
Operating Frequency	17.2 GHZ
Bandwidth	400 MHz
Waveform	FMCW
Polarization	single
Transmit Power	1 W
Antenna Gain	16 dBi
3dB beamwidth	10° (azimuth), 10° (elevation)
Synthetic Length	1.5 m
Range Resolution	0.5 m
Azimuth Resolution	5.8 mrad
Maximum Sensing Distance	2000 m
Sigma naught	-20 dB
SNR	> 10 dB

Functional Block Diagram of GBSAR

GBSAR Prototype

Raw SAR Signal Processing:

MUI

Preliminary Tests

Change Detection in mm

Measured Accuracy < 5 mm

 $dR = \lambda d\phi / 4\pi$

System Verification and Field Test

Actual Test Site (Gunung Pass, Cameron Highland)

Installation at Test Site

Test Site: TS001 Gunung Pass

Sample data set: 150523-110419L

Sample data set: 150822-174259R 50822,74259R Observed T1 at (27.35 m, 1268.10 m) Range -5 -10 -50 Azimuth

Sample data set: 150822-184126R

Fine adjustment of the trihedral T2 with 0.5 mm per step

0.5 mm change detection

Study Area TS02: MeiHua School, TW

ULTIMEDIA UNIVERSITY

3D Optical View

3D Optical + GBSAR Image

3D Optical + GBSAR + LiDAR Image

Taipei Measurement Campaign (02-08 June, 2016)

測點1:潮境中心(KeeLong Test Site. 02-04 Jun)

測點3:石門水庫大壩 (Simon Water Dam, 06 Jun)

<mark>測點2:火炎山</mark>(Fire Hill Test Site, 05 Jun)

Taipei Measurement Campaign (02-08 June, 2016)

Sample Results: Detection of Vibration at LRT Station


```
MULTIMEDI
```

Taiwan Tao Yan Train Station

Changes Detection

Observation Across Two Different Time

Observation Across Two Different Time Zone

Summary

- Ground movements and instabilities such as landslides, falling rocks can lead to considerable human and economic losses.
- Continuous monitoring on high risk area is important to give insight into the mechanisms of land deformation.
- In Malaysia, there are 21,000+landslide-prone areas to be monitored.
- A mmW GBSAR has been developed. It has 0.5 m × 5.8 mrad spatial resolutions, and change detection capabilities up to 5 mm.
- The GBSAR is suitable tool for the land deformation detection, landslide monitoring as well as man made structure monitoring.

THANK YOU

