Impact Of Climate Change Due To Sea Level Rise In Malaysia- Preliminary Development Of Coastal Vulnerability Index (CVI)

CASE SUDY OF LANGKAWI ISLAND, KEDAH 1 October 2015 AMRI MD SHAH Geospatial Technology & Applications Putra World Trade Centre (PWTC)

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

INTRODUCTION

The coastal zones are highly resourceful and dynamic. The coastal zones are facing many natural hazards such as coastal erosion, Storm surge, Tsunami, coastal flooding and sea level rise.

The Intergovernmental Panel on Climate Change (IPCC-CZMS, 1992) defines vulnerability of coastal zones by their degree of incapability to cope with the impacts of climate change and accelerated sea-level rise.

vulnerability assessment includes a combination of factors that determine the degree to which someone"s life, livelihood, property and other assets are put at risk by a discrete and identifiable event in nature and in society.

Institut Penyelidken Hidraulik Kebengsaan Melayela National Hydraulio Research Instituto of Melaysia (NAKRIM) Kementarian Sumber Asil dan Alam Sekliar

OBJECTIVE

i) To investigate the degree of shoreline vulnerability due to projected sea level rise (SLR) in the year 2040, and 2100.
ii) To investigate the impacts of SLR at the most vulnerable shoreline areas

Institut Penyelidikan Hidraulik Kebengseen Meleysia National Hydraulio Research Institute of Meleysia (NAHRIM) Kementerian Sumber Asii den Alam Sekiler

STUDY AREA

LANGKAWI ISLAND, KEDAH

<u>Methodology For the Study</u>

Review existing data and information on coastal features (if available) of Langkawi Island.

Sub divide the shoreline areas into Management Unit(Mu) and carry out general assessment of coastal features for the entire coast of Langkawi Island.

Determine the physical, socio economic, ecology and total vulnerability index for each Management Unit.

Institut Penyelidikan Hidraulik Kebengseen Maleysia National Hydraulio Research Institute of Maleysia (NAHRIM) Kementarian Sumber Asil den Alam Sekiler NAHRIA

The entire island and along the coast. Coastal sites are segregate into 13 Sub-reach (SR) with 82 Management Unit (MU)

Institut Penyelidikan Hidraulik Kebangsean Malaysia National Hydraulio Research Instituto of Malaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

Langkawi Coastal Area

- More than half of the island is hilly terrain.
- The eastern, western and northern part of Langkawi
 forests with minimum economic activities.

- Economic activities are concentrated along the southern part of Langkawi, from SR2 to SR7.
- The business and administration centre is located at Kuah.
- Most of the beaches are public beaches. However, some beaches are privately owned or resort operated.
- Small river outlets can also be found along SR2 to SR7 with wide mudflats spreading the river mouth area.
- Patches of mangrove can be seen sparsely on the southern side of Langkawi while a reserved mangrove area can be found on the northeastern part of

Langkawi known as the Kilim Forest

Sub Reach 3 (SR3)

Imagery Date: 1/24/2012 6º19'51.73" N 99º42'49.19" E elev 0 m eye alt 3.84 km 🔘

Sub Reach 3 (SR 3) – Management Unit (MU:1-9)

Institut Penyelidikan Hidraulik Kebengsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Sub Reach 6 (SR6)

Sub Reach 6 (SR 6) – Management Unit (MU:1-16)

Institut Penyelidikan Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Melaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Vulnerability Assessment

- 1. 5 vulnerability indicators are used to map the vulnerability
- Socio-economic index
- Public infrastructure and facilities,
- Population
- Tourism
- Ecology index
- Physical index.

(The landward coverage -500 meters from the water edge.)

- 2. MUs are categorized as units with "No Evaluation Required" (NER), and thus not considered for vulnerability assessment.
- 3. **"Further Evaluation is Required"(FER)**-possible adaptation measures and determination

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Physical Vulnerability Index

- 1. The physical vulnerability index the existence of natural or man-made coastal protection measures that may afford protection against sea level increase.
- 2. Developed area -southern coast of Langkawi-the platform level of the coastal development is important in determining the severity of impacts due to sea level rise.
- 3. The higher the platform level, the less severe will be the impacts.
- 4. If the platform level is lower than the sea level rise, then this could give risk to several problems such as permanent loss of land area (for very high sea level rise), occasional coastal flooding (for moderate sea level rise), backwater effects and drainage problems.

Institut Penyelidikan Hidraulik Kebangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Physical Vulnerability Index

- 1. This vulnerability scaling -concrete sea walls and revetments at the southern coast of Langkawi.
- 2. Several shore profile surveys have been carried -survey profile levels are then viewed with respect to estimated SLR in year 2040, 2060, 2080, 2100 and also with HAT tide levels obtains from numerical modelling simulations.
- 3. The surveys are carried out in two methods,

-Digital elevation map (DEM) and

-Normal land survey (LS).

Description	Very Low (1)	Low (2)	Medium (3)	High (4)	Very High (5)
Platform level (m MSL)	> 2.5	2.0-2.5	1.5-2.0	0.5-1.5	< 0.5

Vulnerability Scaling for Coastal Protection Platform Level

NAHRIM

unsuuur-enyeliaikan maraulikukeoangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asilidan Alam Sekilar

Physical Vulnerability Index

Digital Elevation Map (DEM) Survey

The survey results using DEM methods mostly cover the shoreline that is inaccessible either due to its location or the shoreline conditions.

NAHRIM

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Instituto of Melaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

Coastal Profile Surveys

Distance (m)	Latitude (^o N)	Longitude (°E)	MSL Height (m)	
50	99.73589	6.266069	0.062	
45	99.73586	6.266108	0.394	
40	99.73581	6.266146	1.295	
35	99.73577	6.266191	2.030	
30	99.73572	6.266236	2.476	l
25	99.73568	6.266281	2.740	
20	99.73563	6.266325	2.878	
15	99.73559	6.266370	2.933	
10	99.73554	6.266415	2.951	
5	99.73550	6.266460	2.947	
0	99.73545	6.266505	2.929	

yelidikan Hidraulik Kabangsaan Malaysia draulio Research Instituto of Malaysia (NAHRIM) n Sumber Asii dan Alam Sakilar

Coastal Profile Surveys

NAHRIM

Distance	Latitude	Longitude	MSL Height (m)
(m)	(^o N)	(°E)	
65	99.80178	6.314704	0.080
60	99.80174	6.314749	0.104
55	99.80169	6.314794	0.108
50	99.80165	6.314839	0.246
45	99.80160	6.314884	0.467
40	99.80156	6.314928	0.721
35	99.80151	6.314973	1.001
30	99.80142	6.315063	1.304
25	99.80137	6.315108	1.634
20	99.80128	6.315198	1.992
15	99.80124	6.315243	2.376
10	99.80119	6.315288	2.779
5	99.80115	6.315333	3.199
0	99.80110	6.315378	3.635

Institut Penyelidikan Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

The only vulnerability factor used to compute Physical Vulnerability Index (PVI) would be the platform level. PVI <u>= A1 x W1</u>

Where,

A1 = Platform level W1= weighting factor Since there is only one indicator being considered, the weighting factor will be the value of 1. Hence,

 $PVI = A1 \times 1$

Т

NAHRIM

The value of PVI is obtained directly without the requirement of weighting factor.

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

PERSIDANGAN A	ANTARABANGSA	A GEOSMART	ASIA 2015			
Description	Very Low (1)	Low (2)	Medium (3)	High (4)	Very High (5)	
Platform level (m MSL)	> 2.5	2.0-2.5	1.5-2.0	0.5-1.5	< 0.5	
Legend For PVI					j.	
Very Hig Medium	gh High n W	SI	16			Coordboarth
		ALC: LANCE	Image © 2015	DigitalGlobe		V Google earth

Ecological Vulnerability Index

- 1. Ecological vulnerability -existence of coastal vegetation or mangrove forest that may be impacted by sea level increase.
- 2. The coast of Langkawi is partially represented by steep hilly terrain constituting tropical forest. Such areas are not covered in the VI evaluation as there seems to be no impact due to the steepness of the terrain.
- 3. Of 82 management units in 13 sub-reaches being studied, 35 are considered not significantly impacted by the sea level rise phenomena.
- 4. Henceforth, only affected MUs are taken into account for EVI assessment.

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

 As indicated earlier, the only vulnerability factor used to compute ecological vulnerability index would be the percentage of area occupied by coastal vegetation.

• Where,

A1 = % area occupied by coastal vegetation W1= weighting factor

• Since there is only one indicator being considered, the weighting factor will be the value of 1. Hence,

```
EVI <u>= A1 x 1</u>
1
```

• In this case, the value of EVI is obtained directly without the requirement of weighting factor .

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

	Very Low (1)	Low (2)	Medium (3)	High (4)	Very High (5)
% of Area occupied by coastal vegetation	No vegetation	<25 %	< 50 %	< 75 %	> 90 %

MU	Area	Area Occupied by Coastal Vegetation	EVI Score	6-3	Factories, buildings and jetties	3	3
2-1	Steep coastal forest with water resort near shoreline	4	4	6-5	Beach with scarce coastal vegetation	3	3
2-2	Beach resort	3	3	6-6	Coastal vegetation & coastal settlement	3	3
2-3	Public beach	3	3	6-7	Coastal vegetation &	3	3
2-4	Telaga Harbour	3	3	6.0	coastal settlement	2	2
2-6	Rocky headland with near- beach resort	4	4	0-0	coastal settlement,	5	5
2-8	Beach resort	3	3		reclamation area and		
2-9	Beach resort	3	3		jetty		
				6-10	Shopping mall, parking lot and reclaimed area	2	2
				6-11	Resorts, shop lots,	2	2

Institut Penyelidikan Hidraulik Kebengsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

and

reclaim land

parking area, jetty, bridge, coastal road

undeveloped

	Very Low (1)	Low (2)	Medium (3)	High (4)	Very High (5)			\bigcirc
% of Area occupied by coastal vegetation	No vegetation	<25 %	< 50 %	< 75 %	> 90 %			Õ
			The second					
						Sector 15		
	*	<u> </u>						
	- V		Y					A. I
	0			•	Mar Const		\mathbb{P}	Ser.
						Y		1º
Legend For E	VI Very High					1		· The f
	High					>	1 and	
20000	Medium			SR 2				
inserved	Low Very Low		Image D 2013 Data SIO, NOAA, U S Image C 2013	i TerraMetros I Navy, NGA, GEBOC I DigitalGlobe		G	iooele	earth
							190	

Socio Economic Vulnerability Index

- 1. The Socio Economic Vulnerability -The main indices that need to be addressed are as follows:-
 - Public infrastructure and facilities
 - Population
 - Tourism
- 2. The Socio Economic Vulnerability Index is then computed based on the average of these indicators and adjusted based on a certain weightage.
 - -Population- 40 %-Tourism- 30 %-Public infrastructure- 30 %
- 3. Greater weightage towards population as compared to the other two indicators reflect greater concern on the impact of the livelihood of the people affected.
- 4. This approach of giving more emphasis on the population is in line with other studies of a similar nature such as the 'Tsunami Modelling Impact Studies For The East Coast Of Sabah, Malaysia' by JPS.
- 5. The sub-indices selected for the socio-economic index which are population, tourism and public infrastructure are further discussed below.

Population

- Indicator of population refers to population density at specific location.
- This only refers to residential areas.
- The population along the coastline comprises mainly of fishing community, apart from rural villages. There are also isolated modern bungalows along the coast line.

Population	Very Low	Low	Moderate	High	Very High
	(1)	(2)	(3)	(4)	(5)
Population Density (individual/km ²)	< 5	5 - 10	10 – 50	50 – 100	> 100

Scaling of population density indicator

Institut Penyelidikan Hidraulik Kebangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

Tourism

- Langkawi is very prominent in tourism, providing major revenue for the island.
- Significant attention needs to be given to the tourism sector in the vulnerability analysis.
- The impact on tourism due to sea level rise is estimated based on estimated number of beds in the hotels, resort etc for each MU.

Tourist	Very Low	Low	Moderate	High	Very High (5)
Population	(1)	(2)	(3)	(4)	
No. of					
Tourists (no.	< 100	100 - 300	300 - 500	500 – 700	> 700
of beds)					

Scaling of tourist population indicator

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Public Infrastructure and Facilities

- Infrastructures are important in the event of rescue and necessary upon mishap, such as sea level rise. Vulnerability of these facilities is determined based on the number of critical facilities available in each MU.
- It is expected that the number of critical facilities are greater in urban areas.

Critical Facilities	Very Low (1)	Low	Moderate	High	Very High (5)
		(2)	(3)	(4)	
Presence of critical					
infrastructure e.g.					
school, clinic, hospital,					
police station, airport,					
port, jetties, power	None	r	2	4	~ 1
station, water	None	Z	3	4	> 4
treatment plant,					
telecommunication					
tower (no. of		Scaling of c	ritical facilities in	dicator	
infrastructure)					

Linstit Nation Kenn

Institut Penyelidiken Hidraulik Kebengsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

Combined Socio-Economic Vulnerability index (SVI)

The combined SVI is then computed as follows according to the weightages that have been described earlier.

SVI = $(B_1 \times W_1) + (B_2 \times W_2) + (B_3 \times W_3)$

		3
Where,		
B ₁	=	population
B ₂	=	tourism
B ₃	=	public infrastructure
Hence,		
SVI	=	$(B_1 \times 0.4) + (B_2 \times 0.3) + (B_3 \times 0.3)$

The Socio Economic Vulnerability Index (SVI) is scored based on quantile range (20th percentile, 40th percentile, 60th percentile and 80th percentile)

NAHRIM

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

20 th	40 th	60 th	80 th
percentile	percentile	percentile	percentile
0.48	0.67	0.85	0.95

Quantile Range of Socio-Economic Vulnerability Indicators

Rank	Vulnerability	Range
1	Very Low	X ≤ 0.48
2	Low	0.48< x ≤ 0.67
3	Moderate	0.67< x ≤ 0.85
4	High	0.85 < x ≤ 0.95
5	Very High	x > 0.95

The SVI Score for the Study Area

Institut Penyelidikan Hidraulik Kebangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

Socio-Economic Vulnerability index

M U	Area	Population	Tourism	Public Infrastructure	Relative SVI	SVI Scor e
2-1	Steep coastal forest with water resort near shoreline	2	4	3	0.97	5
2-2	Beach resort	2	4	2	0.87	4
2-3	Public beach	2	2	2	0.67	2
2-4	Telaga Harbour	2	3	3	0.87	4
2-6	Rocky headland with near-beach resort	1	3	2	0.63	2
2-8	Beach resort	1	3	2	0.63	2
2-9	Beach resort	1	3	2	0.63	2
2-10	River channel	5	1	3	1.07	5
2-11	Fishermen village	5	1	2	0.97	5
2-12	Sg. Melaka river mouth	3	1	3	0.80	3

Institut Penyelidikan Hidraulik Kebangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Rank	Vulnerability	Range
1	Very Low	X ≤ 0.48
2	Low	0.48< x ≤ 0.67
3	Moderate	0.67< x ≤ 0.85
4	High	0.85 < x ≤ 0.95
5	Very High	x > 0.95

Legend For SVI

Very High

Medium

E

Very Low

SR 2

Internet (D. 2012) Terres Minkey and

Rank	Vulnerability	Range
1	Very Low	X ≤ 0.48
2	Low	0.48< x ≤ 0.67
3	Moderate	0.67< x ≤ 0.85
4	High	0.85 < x ≤ 0.95
5	Very High	x > 0.95

Total Vulnerability Index

- 1. The Total Vulnerability Index is estimated by computing the weighted mean of all the individual vulnerability that has been assessed.
- The evaluation approach attempts to factor in all relevant indicators in order to achieve a comprehensive assessment. The proposed weightage for the MUs in the Langkawi Island are as follows:-

Socio economic	-	45 %
Ecology	-	30 %
Physical	-	25 %

In the event that physical impact is insignificant, only socio-economy and ecology factors are considered.

Socio economic - 60 %

Ecology

The main reason for adopting this weightage -importance to the livelihood of the population as compared to other vulnerabilities.

It is followed by ecology, -globally known for eco-tourism noted for the UNESCO's sanctioned geopark as well as various nature attractions

The TVI is scored based on quantile range (20th percentile, 40th percentile, 60th percentile and 80th percentile). The TVI scores computed for each MU.

 $TVI = (SVI \times Wx) + (EVI \times Wy) + (PVI \times Wz)$

3

Where,

SVI	= Socio-economic Vulnerability Index
PVI	= Physical Vulnerability Index
Wx,Wy, Wz	= weighting factor

Hence,

TVI = (SVI x 0.45) + (EVI x 0.30) + (PVI x 0.25) 3

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Melaysia (NAHRIM) Kementarian Sumber Asil den Alam Sekilar

20 th	40 th percentile	60 th percentile	80 th percentile
percentile			
0.73	0.92	1.05	1.23

Quartile Ranges of the Total Vulnerability Index

Rank	Vulnerability	Range	
1	Very low	x≤ 0.73	
2	Low	0.73< x ≤0.92	
3	Moderate	$0.92 < x \le 1.05$	
4	High	1.05< x ≤1.23	
5	Very high	x > 1.23	

TVI Scores for the Study Area

Institut Penyelidiken Hidraulik Kebengseen Melaysia National Hydraulio Research Institute of Melaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

Total Vulnerability Index (TVI) for the Study

Area							
MU	Area	SVI Score	EVI Score	PVI Score	Relative TVI	TVI Score	
2-1	Steep coastal forest with water resort near shoreline	5	4	1	1.23	4	
2-2	Beach resort	4	3	2	1.07	4	
2-3	Public beach	2	3	2	0.77	2	
2-4	Telaga Harbour	4	3	1	0.98	3	
2-6	Rocky headland with near-beach resort	2	4	2	0.87	2	
2-8B	Beach resort	2	3	3	0.85	2	
2-9A	Beach resort	2	3	2	0.77	2	
2-10	River channel	5	2	4	1.28	5	

Kementerian Sumber Asli dan Alam Sekilar

INUNDATED AREAS ALONG THE SHORELINE – 2100 SLR

Institut Penyelidikan Hidraulik Kebangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Institut Penyelidikan Hidraulik Kebengsean Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

MU5-5 (5.71 ha) & 5-6 (2.5 ha)

MU6-2 (4.9 ha)

Institut Penyelidikan Hidraulik Kebangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Affected Land

Institut Penyelidikan Hidraulik Kebengsean Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

NAHRIM

Institut Penyelidikan Hidraulik Kebengeean Malaysia National Hydraulic Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Affected Land

Institut Penyelidikan Hidraulik Kebengsean Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Affected Land

Institut Penyelidikan Hidraulik Kebengsean Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

Rank	Coastal Vulnerability Index (CVI)	Area
1	Very Low	1 Area (Temoyang River Mouth)
2	Low	4 Area (Langkawi Sheraton Beach Resort, Kuala Teriang; Chenang River Mouth; Temoyang River Mouth; and Bella Vista Beach)
3	Moderate	6 area (area beside Chenang River; Meritus Pelangi Beach & Spa Resort, Chenang; Kuah Town; Kuah area; Bella Vista Resort; and Teluk Yu Public Park)
4	High	9 area (Teriang River Mouth until Melaka River Mouth ; Melaka River Mouth; Meritus Pelangi Beach & Spa Resort; Kuah Town; Dataran Lang;Kuah Jetty & Marina; TNB Power Station Apau Village; dan Pasir Tengkorak Beach).
5	Very High	6 area (Teriang River Mouth; LKIM Aquaculture Farm; Kuah Town; Beringin Viilage until Penarak Village; Kilim River Mouth; dan Tg. Rhu Beach).

Institut Penyelidikan Hidraulik Kebengsaan Malaysia National Hydraulio Research Instituto of Malaysia (NAHRIM) Kementarian Sumber Asil dan Alam Sekilar

Institut Penyelidiken Hidraulik Kebangsean Malaysia National Hydraulic Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

No:	MU	CVI	Adaptation Measures	Cost / m (RM)	Length (m)	Estimated Cost (RM) 2040	Estimated Cost (RM) 2100
1	2-8B	Low	Increased rock revetment crest height	1000.00	200	-	200,000.00
2	2-10	Very High	Maintenance dredging – Sg. Teriang Rock groyne for river training	200.00 5,000.00	300 200	-	60,000.00 1,000,000.00
3	2-11	High	Construct geotube to protect mangrove as wave buffer to water village	30,000.00	900	-	27,000,000.00
4	2-12	High	Maintenance dredging – Sg. Melaka	200.00	250	-	50,000.00
5	4-1	Moderate	Rock revetment with suitable toe at shoreline	5,000.00	100	500,000.00	-
6	4-2	Low	Periodic dredging Rock groyne for river training and prevent sand bypassing	200.00 5,000.00	250 200	50,000.00 1,000,000.00	50,000.00 -
	4-3A	Moderate	Periodic Beach replenishment	3000.00	350	1,050,000.00	1,050,000.00
8	4-3B	High	Periodic beach replenishment	3000.00	450	1,350,000.00	1,350.000.00

There are three generic categories of adaptation options that can be used in areas affected by sea level rise, storm surge activity, and/or coastal erosion: planned retreat, accommodation, and protection.

Item	MU No	Brief description	Probable Impacts due to SLR	Possible Adaptation Measures	Remarks
1	1	Steep coastal forest	None	None	NER
2	2-1	Steep coastal forest with water resort near shoreline	Impact to Berjaya Resort, a prominent resort. Insufficient platform level of water resort and walkways	Increase platform level	FER
3	2-2	Beach resort	Impact to Berjaya's beach. Beach erosion threaten near-beach structures	Relocate further inland (higher ground)	FER
4	2-3	Public beach	Beach erosion. Beach also serve as landing points for fishermen's	Man-made islands fronting the beach may reduce the	FER
"No Ev "Eurth	aluation	Required" (NER)	boats B)	impact	

CONCLUSIONS

- 1. The coastal vulnerability index will indicate the high vulnerability area along the shore line for the impact of sea level rise.
- 2. This output would help the implementation agencies in preparedness the impact of SLR. Furthermore, in early planning stage the prevention in developing the high risk to SLR impact.
- 3. Any loss consequence of the phenomenon can be minimize to safeguard the live of the coastal population in study area.
- 4. Decision Support System(DSS)-Assessment of sea level rise at risky area also suggesting the best practice in adaptation and mitigating the SLR impact for the implementing agencies.
- 5. Assessing the impacts of sea level rise remains challenge from the fact that sea level rise is a long term phenomenon, slowly varying process and the consequences is not immediately destructive.

Institut Penyelidiken Hidraulik Kebengseen Meleysia National Hydraulio Research Institute of Meleysia (NAHRIM) Kementerian Sumber Asil den Alem Sekiler

THANK YOU

Institut Penyelidikan Hidraulik Kebangsaan Malaysia National Hydraulio Research Institute of Malaysia (NAHRIM) Kementerian Sumber Asil dan Alam Sekilar

