

$\circ \circ \circ \circ \circ$

WHERE

WHEN

9 – 11 APRIL 2018

ADELAIDE, AUSTRALIA

CLICK HERE TO KNOW MORE

GEO SMART ASIA 2015

LANDSLIDE HAZARD ANALYSIS AT JELAPANG AND GUA TEMPURUNG OF NORTH-SOUTH EXPRESSWAY USING HIGH-RESOLUTION AIRBORNE LIDAR DATA

NORISAM ABD RAHAMAN 1 OCT 2015

TABLE OF CONTENTS

- Introduction: PLUS
- Study Area: Jelapang & Gua Tempurung
- Data Analysis: LIDAR
- The way forward

INTRODUCTION PLUS

PLUS

GPLUS

- Backbone of Malaysian road transport system:
 - Connects major industrial, commercial
 & transportation centers
 - Links major seaports and airports
- States serviced by the NSE make up 81% of population and 89% of GDP in Peninsular Malaysia

		Length
PLUS	North-South Expressway	846 km
ELITE	NSE Central Link	63 km
LINKEDUA	Malaysia-Singapore Second Crossing	47 km
BKE	Butterworth-Kulim Expresssway	17 km
РВ	Penang Bridge	13.5km
		986.5 km

LEBUH RAYA PLUS /PLUS EXPRESSWAYS

PLUS - Assets

STUDY AREAS: JELAPANG & GUA TEMPURUNG

WHY?

- Back-bone of PLUS
- Small maintenance corridor
- Impact of failure from outside
- Debris flow (2004)

6

PLUS

JELAPANG AREA – MAP LAYOUT

JELAPANG AREA – AERIAL PHOTOGRAPH

- Mountainous area
- Granitic Formation (part of Kledang Range)
- High cut rock slopes (shallow regolith)

GUA TEMPURUNG AREA – MAP LAYOUT

GUA TEMPURUNG AREA – AERIAL PHOTOGRAPH

- Boundary between Granitic Formation (northeast) and lime stone formation (south-west).
 Colluvium formation in between
- High cut soil slopes (deep regolith)

STUDY AREAS

LIDAR DATA ANALYSIS

- 1. To define landslide conditioning parameters influencing the characters of landslides in the study areas.
- 2. Analysis for landslide susceptibility and hazard for the area:
 - a) using probabilistic based model: evidential belief function (EBF)
 - b) Analysis using statistical based model: Logistic Regression (LR) models;
- 3. To provide landslide hazard map for the pilot study areas.

CONCEPT

Risk concept

Risk : "Expected losses (of lives, persons injured, property damaged, and economic activity disrupted) due to a particular hazard for a given area and reference period. Based on mathematical calculations, Risk is the product of hazard and vulnerability".

Risk = f(hazard, vulnerability)

Hazard : A threatening event, or the probability of occurrence of a potentially damaging phenomenon within a given time period and area

Vulnerability : Degree of loss resulting from a potentially damaging phenomenon.

According to "The United Nations Office for Disaster Risk Reduction" (UNISDR)

---- United Nations Department of Humanitarian Affairs, 1992

GIS ANALYSIS

Methodology

- DSM and DTM (LIDAR)
- GIS Analysis
 - Altitude
 - Slope / Inclination
 - Aspect
 - Curvature
 - Stream Power Index
 - Topographic Wetness Index
 - Terrain Roughness Index
 - Records of slope failures

LUS

SYSTEM ANALYSIS

INPUT DATA LAYERS (ALTITUDE)

Gua Tempurung

Jelapang

INPUT DATA LAYERS (SLOPE / INCLINATION)

Gua Tempurung

Jelapang

INPUT DATA LAYERS (ASPECT)

Gua Tempurung

Jelapang

INPUT DATA LAYERS (CURVATURE)

Jelapang

INPUT DATA LAYERS (STREAM POWER INDEX)

SPI= $\ln(A * \tan \beta)$

Where As is the upstream area. β is the slope in the given cell

Describe the potential flow erosion at the given point of the topographic surface

Gua Tempurung

TOPOGRAPHICAL WETNESS INDEX

TWI= $\ln(A/\tan\beta)$

Where As is the upstream area. β is the slope in the given cell

TWI describes the tendency for a site to be saturated to the surface given its contributing areas and local slope characteristics

Gua Tempurung

TERRAIN ROUGHNESS INDEX

Topographic Roughness Index (TRI) is one of the morphological factors and which is broadly utilized in landslide analysis

$$TRI = \sqrt{Abs(max^2 - min^2)}$$

Gua Tempurung

OVERALL METHODOLOGY

LANDSLIDE SUSCEPTIBILITY MODELING

LANDSLIDE HAZARD & RISK MODELING

conditioning parameters

Landslide Hazard and Risk Modeling is designed following to the-

United Nations Department of Humanitarian Affairs, 1992

And.....

The United Nations Office for Disaster Risk Reduction" (UNISDR)

- The framework of the EBF model is based on the Dempster-Shafer theory of evidence. Estimation of EBFs of evidential data always relates to a proposition.
- EBFs involve degrees of Belief (Bel), uncertainty (Unc), disbelief
 (Dis) and plausibility (Pls) in the range [0, 1]

Belief (Bel) - lower degree of belief that attribute data support the proposition Disbelief (Dis) - degree of disbelief that attribute data support the proposition Uncertainty (Unc) - 'ignorance' whether attribute data support the proposition or not Plausibility (Pls) - higher degree of belief that attribute support the proposition

EVIDENTIAL BELIEF FUNCTION (EBF) MODELING

US

EBF MODEL OUTPUT (JELAPANG)

e.g. Altitude

EBF MODEL OUTPUT (GUA TEMPURUNG)

101°13'30"E

e.g. Altitude

101º12'0"E

Plausibility

EBF MODEL PROBABILITY MAP

VALIDATION OF SUSCEPTIBILITY MAP

ROC curve

- In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive rate (100-Specificity) for different cutoff points
- Area Under Curve
 - The area between the graph of y = f(x) and the x-axis is given by the definite integral below. This formula gives a positive result for a graph above the x-axis, and a negative result for a graph below the x-axis.

EBF MODEL VALIDATION

LOGISTIC REGRESSION MODEL

Logistic Function:

$$\sigma(t) = \frac{e^t}{e^t + 1} = \frac{1}{1 + e^{-t}}$$

Simplified Logistic Function:

$$F(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

LOGISTIC REGRESSION MODEL

Туре	Dependent variables	Independent variables
Binary value Continuous value Category value	Landslide	Slope, lineament Aspect, curvature, geology

LR MODEL PROBABILITY MAP

Triggering factor

- The transformation of landslide susceptibility map into a hazard map requires consideration of landslide triggering parameters.
- For this purpose, One triggering parameter was taken into account i.e. *precipitation*.
- We analyzed the annual average precipitation values for the period of 2014.
- The annual average precipitation density map was made by the data obtained from 15 rainfall stations in and around the two study areas.
- Inverse Distance Weight (IDW) was used and validated for this Purpose.

RTMS – TRIGGER PARAMETER

HAZARD MAP: EBF MODEL OUTPUT

JELAPANG AREA

HAZARD MAP: LR MODEL OUTPUT

41

HAZARD MAP: HYDROGEOLOGY

GUA TEMPURUNG: HAZARD MODELLING

101°12'0"E

Hazard Risk:

- Catchment Area
- Cut Slopes (ROW)

JELAPANG : HAZARD MODELLING

101°4'0"E

GPLUS

Slope Failure Records:

70% model training 30% validating

EBF MODEL

	Success Rate	Prediction Rate
Jelapang	53%	50%
Gua Tempurung	73%	67%

LR MODEL

	Success Rate	Prediction Rate
Jelapang	90%	88%
Gua Tempurung	85%	83%

NEXT? The way forward

CASE STUDY – GUA TEMPURUNG AREA (CATCHMENTS - HYDROGEOLOGY)

Basin:

- Catchment Mapping
- Funnel shape
- Small outlet
- Impact point

CASE STUDY – GUA TEMPURUNG AREA (RAINFALL ANALYSIS – MULTIPLE SLOPE FAILURES)

Monthly rainfall data - Gua Tempurung

LOCATIONS	-							2012
LOCATIONS	KG	Jan	Feb	Mar	Apr	May	Jun	Jul
KM302.205B - G. TEMPURUNG	RGC1-3	131.8	182.4	87.2	333.8	76.8	14.2	10.2
KM303.25NB - G. TEMPURUNG	RGC1-4	155.8	310.8	292.4	573.8	134.8	20.4	117.0
KM304.69SB - G. TEMPURUNG	RGC1-5	114.6	291.8	260.4	422.6	137.2	22.6	108.8
KM306.35NB - G. TEMPURUNG	RGC1-6	113.0	258.2	287.0	429.6	111.2	22.2	130.4

Daily rainfall data – Gua Tempurung

d as shown	Dentine	evice Year 2012										
Los Highly	opvice	06-Apr	07-Apr	08-Apr	09-Apr	30-Apr	11-Apr	12-Apr	15-Apr			
KM302.2058 - G. TEMPURUNG	RGC1-3	38.6	11.4	0.6	6.8	0.6	26.6	65.B	0.0			
RM303.25NB - G. TEMPURUNG	RGC1-4	77.4	13,4	15.2	5.4	0,6	20.0	114.0	37.8			
KM304.6958 - G. TEMPURUNG	RGC1-5	48.2	7,0	24.2	6,2	3,6	16.0	97.0	38.4			
KW306.35NB - G. TEMPURUNG	RGC1-6	30.8	21.2	13.4	12.8	19.8	14,2	73.6	33.6			
		195.0	\$3.0	53.4	31.2	24.6	76.8	450.4	109.8			
Average		48.75	13.25	13.35	7.80	6.15	19.20	112.60	27.45			

Area	Highest rainfall recorded (mm/hour)
Jelapang area	56.2 mm/hour
Gua Tempurung area (7 nos. of slope failures)	61.6 mm/hour

Hourly rainfall data - Gua Tempurung

1st cycle

D.C.	11-Apr-12					12-Apr-12							
RG	1900	2000	2100	2200	200 2300	0000	0100	0200	0300	0400	0500	0600	0700
RGC1-3		2.8	4,4	2.8	16.6	20.2	36.4	5.6	2.0	1.0	0.4	0.2	
RGC1-4		1.6	7.6	1.0	9.8	19.6	33.2	7.0	24.2	11.6	21.0	61.6	
RGC1-5			5,2	1.2	9.4	21.8	29.2	6.8	2.8	0.6	0.2		
RGC1-6			7.2	2.6	4.2	21.8	27.8	20.2	2.8	0.4	0.2	0.2	
	-	4.4	24.4	7.6	40.0	83.4	126.6	39.6	31.8	13.6	21.8	62.0	

1.10 6.10 1.90 10.00 20.85 31.65 9.90 7.95 3.40 5.45 15.50

· 2nd cycle

RG		12-A	pr-12	13-Apr-12					
	2000	2100	2200	2300	0000	0100	0200	0300	
RGC1-3		2	1 S			3 8			
RGC1-4		5.8	7.2	19.6	30.2	7.0			
RGC1-5		0.4	1.4	33.8	37.4	0.2	0.2		
RGC1-6		2	0.2						
	1999	6.2	8.8	53.4	67.6	7.2	0.2		

Intensity / volume / duration

REINFORCED PREVENTIVE MEASURES

Preventive measures :

- Database updating
- Debris Flow Net
- Rainfall monitoring (RTMS & EWS)
- Aerial surveillence

THANK YOU

