# Geospatial Technologies in Natural Resource Assessment, Environment and Climate Change Related Studies

Ariel C. Blanco<sup>1</sup>, Ayin Tamondong<sup>1</sup>, Anjillyn Mae Perez<sup>1</sup>, Ma. Rosario Concepcion Ang<sup>1</sup>, Enrico Paringit<sup>1</sup>, Kazuo Nadaoka<sup>2</sup> <sup>1</sup>Department of Geodetic Engineering Training Center for Applied Geodesy and Photogrammetry University of the Philippines <sup>2</sup>Tokyo Institute of Technology







# Outline

- Introduction
- Natural Resource Mapping
- Natural Resource Assessment
- Integrated Decision Support Systems
  - CECAM Project
  - Phil-LiDAR 2 Program
  - UP-CCC RAPID NRA Project

# The Need for Detailed Resource Assessment



**INFORMATION NEEDED TO MITIGATE DISASTERS:** 

What resources exist where?

Characteristics and status of these resources?

Which resources are exposed and vulnerable to hazards?

How to protect and conserve resources?

Severe Impacts on: POVERTY ALLEVIATION FOOD SECURITY ECONOMIC GROWTH ENERGY SUPPLY

**Destruction of resources** 

THESE DETAILED INFORMATION ARE NEEDED BY GOVERNMENT AGENCIES AND LOCAL GOVERNMENT UNITS FOR BETTER PLANNING AND DECISION MAKING.



#### RECONSTRUCTION ASSISTANCE ON YOLANDA



 Overall results framework for monitoring progress consistent with Philippine Development Plan.

### Post-Disaster Needs Assessment (1)

The PDNA highlights a number of policy recommendations, including:

- Improving baseline data collection and GIS capability, improved hazard mapping, improved environmental assessments, and watershed monitoring and rivers for early warning for floods;
- **Reestablishment of environmental assets** (e.g. forests, mangroves, marine habitats) to provide protection against future hazards;

### Post-Disaster Needs Assessment (2)

The PDNA highlights a number of policy recommendations, including:

- Development of environmental management plans and updating land use and management plans to guide long-term planning and development;
- Integrating disaster risk reduction, climate change and environmental measures into reconstruction programs; and
- Reestablishing livelihood based on ecosystem services, to build resilient households and income generation and enhance food security.

#### Disaster Risk and Exposure Assessment for Mitigation

# DREAM Phil-LiDAR 1



LiDAR Data Acquisition Component (DAC)

> LiDAR Data Validation and Bathymetry Component (DVBC)





LiDAR Calibration, Point Cloud Classification, and Image Orthorectification Component (DPPC)

Integrating High-Resolution Digital Elevation Models (DEMs) into GIS-based Flood Modeling Component (FMC)





Data Archiving and Distribution of LiDAR Datasets in the Philippines Component (DAD)

Training for LiDAR Data Acquisition, Processing, Validation, and Flood Modeling Component





# **Objectives of Phil-LIDAR-2**



- To <u>complement on-going programs</u> of government agencies (e.g. DA, DENR, DOE) <u>by</u> <u>utilizing LIDAR data</u>;
- To <u>develop methodologies for extracting resource</u> <u>features from LiDAR and other RS data</u> for various applications:
  - Production of high value crops
  - Irrigation assessment
  - Coastal resource conservation; aquaculture production
  - Forest protection
  - Discovery of renewable energy sources

# **Objectives of Phil-LiDAR-2**

- Produce high-resolution national resource maps;
- Produce vulnerability assessment maps for high-value crops and coastal resources;
- Formulate recommendations to help address future local supply and demand in agriculture, coastal, forest, and renewable resources.

### PHIL-LIDAR 2 PROJECTS



Agricultural Resources Assessment (PARMap)



Aquatic Resources Assessment (CoastMap)



Forest Resources Assessment using LIDAR (FRExLS)



Development of the Philippine Hydrologic Dataset (PHD) for Watersheds



Renewable Energy Resources Mapping (REMaps)









### COCONUT











### Methods



(A) Orthophoto RGB, (B) HSV transformed with Value replaces by LIDAR intensity, (C) GRVI, (D) LIDAR intensity, (E) LIDAR nDSM, (F) LIDAR number of returns





# **Method**s



| Features      | Image Layers   |
|---------------|----------------|
| •GLCM         |                |
| Homogeneity   | R              |
| •GLCM Entropy | G              |
| •GLCM 2nd     |                |
| Angle Moment  | NSM            |
| •GLCM St Dev  | Intensity      |
|               | GRVI           |
| GLDV Entropy  | Intensity      |
|               | NSM            |
|               | Orthophoto RGB |
| •St dev       | HSV image      |
| •Mean         | GRVI           |
|               | Intensity      |
|               | NSM            |
|               | Num Ret        |

### MULTIRESOLUTION SEGMENTATION Shape: 0.2 Compactness: 0.5m Scale:30



- Dominant Crop: Rice
- Large area of bare agricultural lands during data acquisition

### **Classified Map using LiDAR**















### Maipalig, Ilocos Norte:



### **Workflows and Initial Results: Stream Network**

#### ABONGAN STREAM NETWORK

#### ABORLAN STREAM NETWORK



Project 4: Development of the Philippine Hydrologic Datasets (PHD) for Watersheds from LIDAR Surveys Phil-LiDAR 2 - National Detailed Resources Assessment using LiDAR

### Workflows and Initial Results: Wetlands Classification Process





#### Mean NIR < 279.45

| non-wetland |         |           |           |  |  |
|-------------|---------|-----------|-----------|--|--|
| Features    | J       | Direction | Threshold |  |  |
| Mean nir    | 1.99365 | <         | 279.449   |  |  |
| Brightness  | 1.83705 | <         | 219.136   |  |  |
| Max. diff.  | 1.75035 | <         | 0.786976  |  |  |
| Mean pan    | 1.70616 | <         | 207.870   |  |  |

#### Mean NIR < 440

- classification
  - 📲 with Mean nir <= 440 at level 1: wetland
  - wetland at level 1: merge region
  - 🔼 unclassified at level 1: non-wetland
  - 📲 wetland with Area <= 200000 Pxl at level 1: non-wetland
  - ..... non-wetland at level 1: merge region
- exportation
  - 🖓 wetland at level 1: export object shapes to lake1

#### **Biomass Workflow**



#### Solar Workflow – Urban Scale







### Wind Resource Assessment Workflow (National Scale)





# The RAPID NRA Project



- NRA as part of the disaster and vulnerability risk assessments of RAPID.
- NRA results as important component
  - to fully understand the risk posed by climate change to the environment and the community;
  - to develop climate change adaptation strategies and natural resource management responses to enhance adaptive capacity and resilience of our target communities.

# The RAPID NRA Project

 The NRA is envisioned to generate information that will guide development of more integrated strategies for *reversing degradation, harnessing resources for productive purposes* and *maintaining their ecosystem services*.

# **Objectives of NRA**

- Provide an updated and detailed inventory of selected natural resources.
  - This includes the spatial distribution of these resources, how resources are being utilized for various purposes, and in general, the good and services they provide.
- Examine historical changes of these resources in order to analyse the impacts of various activities and practices of the people and of the changing climate conditions.

# **Objectives of NRA**

- Provide projections and scenarios on the potential future distribution and condition of these natural resources.
- Valuation of resources
- Develop a community-based NRA system that can provide quick assessments periodically and after typhoons and other calamities.

#### Overview of the NRA Project

San Pedro Bay and Surrounding Municipalities



# **Project Areas**

LEYTE **Tacloban City** Palo Tanauan Tolosa Dulag Mayorga Macarthur (Javier) Abuyog

**SAMAR** Basey Marabut

### **EASTERN SAMAR**

Lawaan Balangiga

Focus Resources: Forest, Agriculture, Water, Coastal and Marine

### Ridge-to-Reef: Interlinkages



#### Overview of the NRA Project



Ridge-to-Reef: Watersheds

### **RAPID NRA Modules**



# **RAPID NRA Framework**



### Data Flows during the NRA Project



# Data Flows after the NRA Project?



R&D, Extension services

### **Coastal Environmental Issues**



Intensive Mariculture Zones



### from watersheds

### **Increase poverty incidence**

#### **CECAM View of The Coastal Environment**

### Linked system of models



### **Desktop IDSS Concept**



### **Network IDSS Concept**



#### **Bolinao IDSS**

### **Developmental use of models**



Economical benefits which local communities gain from aquaculture business considering risks of fishkill events

#### Methods results and discussion

### Fish mortality map : Scenario analysis

#### Calculated fish mortality for Feb to July

Scenario 0 (keeping present condition) Scenario 1 (25% feed cut in all area)







The fish mortality drastically decreases by cutting the fish feed by 25%.

#### Methods results and discussion

#### Fish mortality map : Scenario analysis

#### Calculated fish mortality for Feb to July

Scenario 1 (25% feed cut in all area)

Anda



Scenario3 (Bolinao -25%, Anda +25%)



The effect of reduction is limited if Anda doesn't follow.  $\rightarrow$ Importance of corporation between Anda and Bolinao

#### Addressing Sediment Discharges

### Watershed Models (Bani and Alaminos Watersheds)



### Land Cover Change Scenarios (Example: Bani Watershed)



#### Scenarios

- 1. Current Base Scenario
- 2. Current Base with Soil Conservation
- Scenario (0.38% decrease of SED\_K)
- 3. 30% Agricultural Cropland with Soil Conservation Scenario
- 4. 30% Agricultural Cropland without Soil Conservation Scenario
- 5.30% Deforestation
- 6. 30% Deforestation Conversion (to rice field)
- 7. More Residential Area (4 sq.km.)
- 8. Lower Channel Buffer Zone
- 9. Upper Channel Buffer Zone

### Land Cover Change Scenarios (Example: Bani Watershed)



# Summary and Conclusions

- Accurate and detailed inventory of various natural resources (recent state and conditions) is being conducted.
- Various methodologies on the integrated use of LiDAR and other data sets have been developed.
- This is further extended to include assessment of changes, trends, dependency, sustainability, resilience, projections and scenarios geospatial approaches, field surveys and socio-economic surveys and workshops.

# Summary and Conclusions

- Capability building and enhancement and Sustainability will be achieved through
  - Active involvement of universities, LGUs, agencies, and communities
  - Establishment of system of data collection, processing, updating, sharing, and support mechanism
- Overall, this is expected to result in a more sustainable and responsive utilization of space technologies for improved natural resource assessment in the Philippines.







### **THANK YOU VERY MUCH!**